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A mechanism amenable to laminate and fold flows is identified and quantified. This laminating mechanism
follows from a physical and experimental approach relying on the interlaced structure of velocity and Lagrang-
ian acceleration. The Lagrangian acceleration being the resultant of the forces applied on particle fluids, the
component of acceleration perpendicular to the velocity vector allows the quantification of a rate of change of

the velocity’s direction, i.e., the local angular Lagrangian velocity, �̇. The spatial variation in �̇ is then used to
predict and measure the lamination and folding rate. To support and illustrate this approach, three basic
experimental flows, driven by electromagnetic forces, are discussed and compared. Folding rate intensities are
extracted for different characteristic length scales. Also, good agreement is found between grid deformation
and the prediction of lamination rate. This quantification of lamination rate opens new avenues for the design
of mixers, in particular at low Reynolds numbers.
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Mixing is an important phenomenon in numerous natural
and industrial flows. Large scale mixers often rely on the
intrinsic properties of turbulence to stir and consequently
mix flows. When the scales are reduced, e.g., for microflows,
the flow’s stirring cannot rely on intrinsic properties of tur-
bulence �1�. Such flows need to be engineered �2�, so as to
mix elements of very low diffusivity. For a given energy,
efficient stirrers increase the length of interfaces in a mini-
mum of time or length of the microchannel. Consequently,
standard mixing approaches rely on the study of regions with
high values of strain as they are amenable to produce fast
and local exponential stretching. This has led to the separa-
tion of flows in hyperbolic and elliptic domains �Okubo-
Weiss decomposition� and the study of: the distribution of
hyperbolic stagnation points, strain persistence and maps,
finite-time Lyapunov exponents, e.g., �3–9�. As introduced
by the seminal talk of Reynolds �10�, proper combinations of
lamination and stretching, like a baker folding and stretching
pastry, can also lead to an exponential growth of material
lines and consequently interfaces �6,11�. While, alone, shear
or lamination would lead to linear growth. Figure 1 illus-
trates the exponential growth of a colored band with the rep-
etition of stretching-laminating cycles. In addition, once
laminated/striated structures enter a domain of high strain
�hyperbolic domain� they are stretched and compressed. This
enhances �locally� mixing by extending the length of inter-
faces and importantly by increasing concentration gradients
with the reduction of the striation thickness, as illustrated in
Fig. 2�b�. Recently, Bajer et al. �12� showed that the lamina-
tion, due to differential velocities, increases the diffusion in
the center of analytical vortices. Similarly, the analytical
whorl illustrated in Fig. 3�b� highlights a higher lamination
where the derivative of the whorl’s angular velocity along its
radius is the highest, as shown by the red �dark gray� curve.
Such spirals laminate flows by rolling material lines. Lami-
nation is also used in circular devices such as the one illus-
trated in Fig. 3�a� which has been applied to microfluidic
�13�. To date, the quantification of laminating and folding

mechanisms is still largely unexplored. Folding is often re-
lated to the need for flows stretched in confined domains to
bend. Also, bending and corresponding striation can appear
within local jets, as illustrated by Fig. 2�a�. Even if chaos and
folding could be quantified, a posteriori, using Horseshoe
maps �14� and geometrical quantification of the interface pat-
tern �15�, the quantification of folding often relies on quali-
tative visualizations, e.g., �16–18�. The terminology folding
and lamination rate represents here, broad sense, the rate at
which a material line is bent and/or rolled so as to generate
striated patterns. Lamination rate is a key element to comple-
ment mixing studies and contribute to the design of new
mixers, e.g., ordered devices at low Reynolds numbers �19�.
This letter attempts to isolate and to quantify a mechanism to
explore lamination rates.

The proposed fundamental mechanism quantifies the ac-
tion of the forces applied on a material line to turn it at
different angular speeds. The Lagrangian acceleration, a,
represents the force exerted on a particle-fluid by its environ-
ment and governs the alteration in direction and intensity of
its Lagrangian velocity, uL. This is described using the
Navier Stokes equation,

a =
�uL

�t
=

�u

�t
+ �u · ��u = −

1

�
� P + ��u +

1

�
f , �1�

where u is the velocity of the flow at the spatial position x
�uL�t�=u�xE , t� when xE is the spatial position of the fluid
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FIG. 1. �Color online� Stretching of a colored band via cyclic
combinations of shear and lamination. The building of these cycles
is illustrated for the first iteration, n=1.
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element�; − 1
� � P, ��u, and 1

� f are, respectively, the actions
of pressure, viscous, and body forces.

This new approach considers the alignment between the
velocity and the Lagrangian acceleration, and in particular
the component of the acceleration perpendicular to the ve-
locity, ap=a−at with at= �a ·u�u / �u ·u�, to determine the lo-

cal Lagrangian angular velocity, �̇, �i.e., the rate of change of
direction of the Lagrangian velocity vector at position x�
around the rotation vector, ef; see Eq. �2�. It should be noted
that �u / �u� ,ap / �ap� ,ef� defines a Frenet frame attached to
the fluid element, e.g., �20�. Also, while being mathemati-

cally related, �̇2=�2u ·u, the Lagrangian angular velocity dif-
fers from the trajectory curvature ��� which has been the
focus of recent studies, e.g., �20�.

�̇ =�ap · ap

u · u
, ef =

u � ap

�u � ap�
. �2�

The folding and lamination rate of a material line element,
d�, around the direction ef is now defined using the spatial

variation in �̇ along d�. This is also an elegant way to char-
acterize the differential winding or twisting of linked twist
map �11�. The matrix of folding and lamination rate, G�̇,
around the direction ef at position x is defined by Eq. �3�
which considers the Eulerian derivatives of the Lagrangian

quantity �̇.

G�̇�i, j� = �ij
� �̇�x�
�xi

. �3�

The intensity of the lamination and folding rate, Ṙ fol, ap-
plied to d� is then quantified using Eq. �4�,

Ṙ fol�d�� = �G�̇d�� . �4�

When the spatial variation in the Lagrangian angular ve-
locity is coherent and sustained over a given domain, the

striations generated within this domain increase with its size.
To extract the laminating potential of flows �different from
the effective lamination of given material lines� at a given
length scale, �, the folding rate intensity given by Eq. �4� is

simplified to Eq. �5� where ��̇ should be coarse grained at
size �.

Ṙ fol = ���̇�� . �5�

This mechanism applies to whorls, tendrils and any flow
structures as it is by definition local in time and space. It is
the persistence and coherence in time and in space that
would indicate the type of laminated structures generated.
Also, this definition relies on the choice of a frame of refer-
ence which by default could be taken as the laboratory/mixer
reference or the mean velocity.

The proposed mechanism is now applied to experimental
flows using a shallow layer of brine driven by electromag-
netic forces, similarly to �7,9,21�. Fundamental flow configu-
rations are driven by electromagnetic forces, f, so as to de-
sign the geometry of the flows �19�. To achieve this, a pair of
square permanent magnets �LM =40 mm� is used with differ-
ent orientations compared to the direction of the electrical
current. The flow configurations are consequently named

(b)(a)

FIG. 2. �a� Bending of a material line. �b� Evolution of a striated
structure in a pure strain region. Temporal evolution from light gray
to black.

(b)(a)

FIG. 3. �Color online� Illustrations of Lamination. �a� Circular
device: the internal disk rotates while the external boundary is im-

mobile. �b� Lamination within a whorl of angular velocity �̇

= �̇0 exp�1− �r /R�2� after six revolutions. The black and red �gray�
lines respectively illustrate the whorl and ��̇ /�r.

(b)(a) (c)

(d) (f)(e)

(g) (h) (i)

FIG. 4. �Color online� �a� Schematics of the different forcing
configurations. The arrows indicate the direction of the electrical
current j and of the main forces pumping the flow. �b� Velocity
fields, u�. �c� Acceleration fields, a�. Color scales minima �black�
are 0, maxima are 4.5 for �b� and 6.5 for �c�
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according to this angle, as illustrated in the first column of
Fig. 4. The corresponding flows are laminar, quasi-two-
dimensional and quasisteady for the low forcing intensity
considered �19�. The experimental data are well resolved in
space and time. The length of the PIV �particle image veloci-
metry� correlation windows is more than ten times smaller
than the magnets’ length with an overlap of 50%. The tem-
poral resolution allows real-time PIV between consecutive
pictures of a continuous sequence. This enables the extrac-
tion of the spatial distribution of the velocity and accelera-
tion fields via an hybrid PIV-PTVA �particule tracking ve-
locimetry and accelerometry� procedure. For more details
see �19,22,23�. These electromagnetically driven flows
present different geometries and topologies for both velocity,
u�=u /urms, and acceleration fields, a�=a /arms, as illustrated
by Fig. 4. rms denotes the root mean square values computed
over the measurement domain. The values obtained for
configurations 0°, 15°, 90° are, respectively, 1.73, 1.88,
and 1.98 mm/s for urms and 0.291, 0.297, and 0.265 mm /s2

for arms. The reference scales of the forcing are chosen

as: LM for the length, uref =� frmsLM

2� �0.015 m /s for the
velocity, aref =

1
� frms�0.003 m /s2 for the acceleration,

Ṙ fol−ref =aref /uref �0.19 rad /s for the lamination rate

and tref =LM /uref �5.2 s for the time. Consequently,
Ṙ fol−rms

+ =Ṙ fol−rms /Ṙ fol−ref, L+=L /LM, and t+= t / tref.
The laminating rates of these three typical flow configu-

rations are now quantified. Under practical consideration, the
smallest accessible � is the size of the PIV mesh; �=�m. For

length scales larger than �m, the value of ��̇�ef ·z�, where z is
the direction perpendicular to the measurement plane �ef ·z
= 	1, according to the direction of rotation� is coarse
grained by averaging within mobile windows of size L. The
laminating rate intensity distribution is thus computed with
�=L. Figure 5 gives the evolution of the root mean square of

the folding rate intensity, Ṙ fol−rms
+ , versus L+. Ṙ fol−rms

+

reaches maxima values for typical length scales which are
much higher �one decade� than the folding rate at the mesh
size. This indicates that these laminating flow structures are

FIG. 5. �Color online� Lamination rate intensity, Ṙ fol−rms
+ vs

L+.

(b)(a) (c)

(d) (f)(e)

FIG. 6. �Color online� Lamination rate intensities, Ṙ fol
+ , for the

three flow configurations and the two length scales: �a� mesh size,
L+=0.086, �b� L fol

+ =1.38. Same domain and color scale as Fig. 4.
Color scale minima �black� are zero, maxima are �by row from top
left� 0.4, 0.4, 0.04, 0.9, 0.9, 0.4.

(b)(a)

(c) (d)

(f)(e)

FIG. 7. �Color online� Deformation of a grid superposed to
maps representing the mean �over time� lamination rate along par-
ticle fluids tracked backward in time. Left column corresponds to
t+�0.61 and right column to t+=4.9. L fol

+ =1.38. Same color scale
as Fig. 4, minima �black� are zero and maxima, by row from top
left, are: 0.9, 0.6, 0.9, 0.6, 0.4, 0.3.
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coherent and more efficient around a typical length-scale.
For the configuration 15°, this length scale is noted L fol with
L fol

+ =1.38. Also, the configuration 90° has a lower lamina-
tion rate than the two other configurations for sizes smaller
than approximately L+=2 which is the spacing between the
magnet centers and the characteristic lamination length scale
of case 90°. The spatial distributions of Ṙ fol−rms

+ given in Fig.
6 for �=�m and �=L fol complement Fig. 5. For the three
orientations larger magnitudes are observed over larger do-
mains for �=L fol.

Finally, the lamination of a flow is an integrative process
along the Lagrangian trajectories of the particles defining a
material line. To highlight the ability of the proposed defini-
tion to quantify the laminating properties of flows, Ṙ fol

+ is
averaged, over a time t, along fluid element trajectories
tracked backward in time. The initial positions are chosen as
the PIV mesh to build the corresponding maps of lamination.
This roughly quantifies the distribution and intensity of the
lamination within the flows after given times. The final test is
performed by comparing flow visualizations �starting at −t
with a regular distribution of black bands� with these mean

quantities. If the measure of Ṙ fol
+ is coherent, the laminated

domains should be found where the backward integration is
high. Figure 7 presents superposed results at a short �t+

=0.61� and a long �t+=4.9�LM /urms� tracking time with �
=L fol. It should be mentioned that the mean of the Lagrang-
ian lamination rate fields is roughly conserved during back-
ward integration. Also, this mean is within a few % of the
mean lamination rate. After a short time, and for the three
configurations, the mesh is bent where the maxima of the
mean lamination rate are found. This captures some bending
properties of the local “jets” observed in Fig. 4. In fact, such
identification relies on the acceleration mechanisms shaping
these local jets. After a more significant time, the three con-

figurations show good agreement between the flow visualiza-
tions and the spatial distribution of the mean lamination rate.
For 0°, the maximum lamination is observed where the mean

of Ṙ fol
+ is maximum. The four circles with small integral

values superpose with domains where the flow has been
weakly folded as shown by the persistence of the straight
crosses. For 15°, the eight shape of the visualization pattern
superposes well with the map. The local minima of the inte-
gration noticeable within both loops of the eight, correspond
to a weaker lamination of the visualization pattern and the
local maxima correspond to material lines which have been
bent and/or rolled. Finally, in the 90° case, the heart of the
flow appears like in a solid body rotation and consequently
the lamination is very weak there and the main folding is
found around this heart.

The experimental results presented in this letter support
the proposed mechanism to explore, quantify and predict
lamination and folding rates of flows and mixers. The pro-
posed definition can be applied to a broad variety of flows
and studies. The quantification and prediction of folding and
lamination rate should be a key element for the design of
mixers and should open avenues for the constructive design
of multicycles mixers. The experimental results confirm that
such an approach based on the combined distribution of ve-
locity and Lagrangian acceleration can now be pursued. In-
deed, the recent possibility for experimentalists to access the
spatial distribution of the Lagrangian acceleration supports
this new approach. Further proof, discussion, and applica-
tions to unsteady flows should come from the author’s group
and readers.
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